L’apprentissage supervisé, dans le contexte de l’intelligence artificielle, est la méthode d’apprentissage la plus utilisée en Machine Learning et en Deep Learning. L’apprentissage supervisé consiste à surveiller l’apprentissage de la machine en lui présentant des exemples de ce qu’elle doit effectuer. Ses utilisations sont nombreuses : reconnaissance vocale, intelligence artificiel
le, classifications, etc. Ainsi, la régression linéaire fait partie d’une des techniques d’apprentissage supervisé la plus utilisée dans la prédiction d’une valeur continue. Aussi, la grande majorité des problèmes de Machine Learning et de Deep Learning utilisent l’apprentissage supervisé : il est donc primordial de comprendre correctement le fonctionnement de cette méthode.
Comment fonctionne un apprentissage supervisé ?
Le but de l’apprentissage automatique est de créer des algorithmes aptes à recevoir des ensembles de données et à réaliser une analyse statistique pour prédire un résultat.
Si on appelle ça un apprentissage supervisé, c’est parce que le processus d’un algorithme tiré du Training Set (ensembles de données) peut être considéré comme un enseignant qui surveille le processus d’apprentissage. Nous connaissons les bonnes réponses, l’algorithme effectue des prédictions sur les réponses et est ensuite corrigé par l’enseignant. L’apprentissage cesse quand l’algorithme atteint le niveau attendu pour être efficient.
Il consiste en des variables d’entrée X et une variable de sortie Y. L’algorithme a pour but d’apprendre la fonction de l’entrée jusqu’à la sortie.
Y = f (X)
Les étapes de l’apprentissage automatique sont :
- La collecte des données et leur labellisation
- Le nettoyage des données pour identifier de potentielles erreurs ou manquement
- Le prétraitement des données (identification des variables explicatives notamment)
- Instanciation des modèles (modèle de régression ou de classification par exemple).
- Entraînement des modèles
- Validation du modèle
Ainsi et comme le montre la formule Y = f (X), le modèle d’apprentissage supervisé est très efficace pour étudier des relations linéaires mais il reste incapable de performer quand il y a des relations plus complexes qu’une linéarité entre les variables.
Apprentissage supervisé ou non supervisé ?
L’apprentissage non supervisé correspond au fait de n’utiliser que des données d’entrée (X) et aucune variable de sortie Y correspondante. Le but de l’apprentissage non supervisé est de modéliser la structure des données afin d’en apprendre plus sur les données et à la différence de l’apprentissage supervisé, il n’y a pas de bonne réponse ni d’enseignant. Les algorithmes sont laissés à leurs propres processus pour étudier et choisir la structure des données qui soit intéressante.
L’apprentissage automatique présente des atouts que les apprentissages non supervisés n’ont pas, mais il rencontre aussi des difficultés. En effet, l’apprentissage supervisé est plus apte à prendre des décisions auxquelles les humains peuvent s’identifier car les données sont elles-mêmes fournies par l’humain. Néanmoins, les apprentissages supervisés rencontrent plus de difficultés à traiter les données qui s’ajoutent après l’apprentissage. En effet, si un système connaît les groupes chiens et chats et reçoit une photographie de souris, il devra la placer dans l’un ou l’autre de ces deux groupes alors qu’elle n’y appartient pas. Au contraire, si le système avait suivi un apprentissage non supervisé, il ne serait pas capable d’identifier que c’est une souris mais il serait capable de le définir comme n’appartenant à aucune des 2 catégories chiens et chats.
Considérons le problème classique de la fidélisation des clients, nous constatons que nous pouvons l’aborder de différentes manières. Une entreprise veut segmenter ses clients. Cependant, quelle est la stratégie la plus appropriée ? Est-il préférable de traiter cela comme un problème de classification, de regroupement ou même de régression ? L’indice clé va nous donner la deuxième question.
Si l’entreprise se demande : « Mes clients se regroupent-ils naturellement d’une manière ou d’une autre ? », il n’y a pas à définir de cible pour le regroupement. En revanche, si elle pose la question autrement : « Pouvons-nous identifier des groupes de clients ayant une forte probabilité de se désabonner dès la fin de leur contrat ? », l’objectif sera bien défini. Par conséquent, elle prendra des mesures en fonction de la réponse à la question qui suit : « Le client va-t-il se désabonner ? ».
Dans le premier cas, nous avons affaire à un exemple d’apprentissage non supervisé, tandis que le second est un exemple d’apprentissage supervisé.
L’apprentissage supervisé chez DataScientest
Considérant l’efficacité et l’importance de l’apprentissage supervisé, DataScientest le place parmi les connaissances à valider aux cours de ses formations. Notamment au sein de la formation de data analyst et dans le module de Machine Learning de 75h, il vous sera demandé d’apprendre à identifier les problèmes de Machine Learning non supervisés, et apprendre à utiliser des méthodes d’apprentissage supervisé par des problèmes de régression. De même, dans la formation de data management, dans le module Data Literacy, nous apprendrons à identifier quelle méthode de Machine Learning utiliser selon le type de métier. Enfin, dans la formation de data scientist, le module de Machine Learning de 75h se verra attribuer une partie conséquente sur le sujet des apprentissages supervisés et non supervisés, leurs mises en place et l’identification de leurs problèmes.
No Comments