Browsing Tag

data visualization

formation-data-engineer.jpg
Dossier

Qu’attendre d’une formation data engineer ?

Le data engineer est l’une des professions les plus demandées ces dernières années. Connaissant une grande croissance, il s’agit de l’une des professions les plus rémunératrices au même titre que le métier de data scientist (data science, Machine Learning…). L’augmentation massive des données générées et des technologies qui ont émergé autour d’elle en sont les principales causes. Alors, que ce soit via une formation data engineer à distance ou dans une école d’informatique, qu’acquiert-on en apprenant à devenir un expert du data engineering ?

Des notions de base

Parmi les notions de base que les futurs data engineers devraient acquérir se trouve Linux. Ce système d’exploitation est le plus utilisé dans les déploiements Cloud et Big Data. Un data engineer doit au moins être à l’aise avec ces technologies. Ainsi, il peut éditer facilement des fichiers, exécuter des commandes et naviguer dans le système.

Il doit aussi maîtriser un langage de programmation comme Python. Ce point inclut la possibilité d’interagir avec les API et d’autres sources de données de manière simple et directe.

Par définition, le Big Data se déroule généralement dans des systèmes distribués. Ces derniers font partie des connaissances fondamentales qu’un bon ingénieur de données doit acquérir. Ces systèmes présentent de nombreuses particularités concernant la réplication des données, la cohérence, la tolérance aux pannes, le partitionnement et la concurrence. À ce stade, la formation comprend des technologies telles que HDFS, Hadoop ou Spark.

hadoop-data-engineer

Des compétences de base

Technologies et services Cloud

La demande pour ces technologies ne cesse de croître. Ainsi, se lancer dans des projets de migration vers le Cloud est devenu un impératif pour les entreprises. Un bon data engineer doit connaître et avoir de l’expérience dans l’utilisation des services Cloud, leurs avantages, leurs inconvénients et leur application dans les projets Big Data. Il doit au moins être à l’aise avec une plate-forme comme Microsoft Azure ou AWS. De plus, il doit connaître les bonnes pratiques en matière de sécurité et de virtualisation des données. Il ne faut pas oublier que ces technologies sont là pour durer. Par conséquent, suivre une formation qui les inclut dans le programme est toujours une bonne idée.

Bases de données

Les data engineers doivent connaître le fonctionnement et l’utilisation des bases de données, les différences entre les bases de données relationnelles et NoSQL. Le langage de base pour interagir avec ces bases de données est SQL. En ce sens, un futur data engineer doit se familiariser avec les requêtes d’écriture et de lecture ainsi que la manipulation de données. En outre, il doit comprendre la différence entre les types de bases de données NoSQL et les cas d’utilisation pour chacun d’eux.

Pipelines de données

L’un des principaux rôles des ingénieurs de données est de créer des pipelines de données. Pour ce faire, il utilise des technologies ETL (Extraction-Transform-Load) et des cadres d’orchestration. Le data engineer est formé pour connaître ou se sentir à l’aise avec certaines des plus connues telles que Apache NiFi ou Airflow.

processus-etl-data-enginering

Des compétences avancées

Il existe d’autres compétences et connaissances acquises lors d’une formation data engineer en plus des compétences de base. Elles ajoutent une grande valeur aux compétences professionnelles.

  • Systèmes de mise en file d’attente de messagerie comme Kafka ou RabbitMQ : les data engineers doivent comprendre les avantages du déploiement de ces technologies et leur architecture.
  • Langage de programmation orienté objet comme Python : ces langages sont très utiles dans le secteur du Big Data. La plupart des frameworks et outils open source sont développés avec des langages JVM. Ils seront particulièrement utiles pour développer des intégrations de technologies, résoudre les erreurs et comprendre les journaux.
  • Traitement de flux avec des outils de traitement de streaming comme Flink, Kafka Streams ou Spark Streaming : une formation data engineer doit inclure l’apprentissage de ces outils. Les entreprises doivent aujourd’hui mettre en place des projets avec des exigences en temps, avec de faibles latences de traitement. En ce sens, la formation à ces technologies est très intéressante avec de nombreux cas d’utilisation à exploiter.
data management
Définitions

Qu’est-ce que le data management ?

Le concept de data management ou gestion des données comprend une liste complète de sujets associés et connexes qui couvrent l’ensemble du processus de gestion et d’exploitation des données. Dans cette liste, nous pouvons trouver des termes tels que l’architecture de données, la modélisation de données, l’intégration de données, la qualité des données, le Big Data  la confidentialité et la sécurité des données. Il s’agit d’une partie du Business intelligence permettant, au même titre que les autres éléments clé de la data science, de mettre en place des outils optimisant la prise de décisions.

Qu’est-ce que le data management ?

On entend souvent parler de la gouvernance des données ou data governance. Mais, il ne s’agit que d’un élément clé du data management. Et la gestion des données est un ensemble complet de pratiques, de concepts, de procédures et de processus. C’est également un large éventail de systèmes complémentaires qui permettent à une organisation de prendre le contrôle de ses ressources d’informations, de la collecte à la sécurisation des données.

Le data management en tant que pratique générale concerne le cycle de vie complet de données de référence depuis leur point de création d’origine jusqu’à leur mise hors service finale.

Concepts autour du data management

Beaucoup de questions sont posées autour du sujet « data management » :

  • Est-il facile d’accéder, de nettoyer, d’intégrer et de stocker les données personnelles des gens ?
  • Quel type de données les acteurs au sein de l’entreprise utilisent-ils ?
  • L’entreprise dispose-t-elle d’un système efficace pour une analyse de données au fur et à mesure qu’elles circulent en interne ?

taches-data-management

Ces questions invitent à comprendre certains concepts permettant de connaître en profondeur ce qu’est réellement la gestion des données :

1.      Accès aux données

Ce terme fait référence à la capacité d’accéder et de récupérer des informations où qu’elles soient. Certaines technologies peuvent rendre cette étape aussi simple et efficace que possible afin que les entreprises puissent utiliser les données et ne pas seulement les trouver.

2.      Qualité des données

Il faut s’assurer que les données soient exactes et utilisables aux fins prévues. Cela commence à partir du moment où elles sont trouvées et se poursuit via divers points d’intégration avec d’autres données.

3.      Intégration de données

Ce terme définit les étapes pour combiner différents types de données. Les outils d’intégration de données permettent de concevoir et d’automatiser les étapes.

4.      Contrôle des données

Il s’agit d’un ensemble continu de règles et de décisions permettant de gérer les données d’une entreprise afin de garantir que la stratégie sur ces données est alignée celle de l’entreprise.

5.      Master data management (MDM)

Unification et gestion de toutes les données communes et essentielles à tous les domaines d’une organisation. Ces données de base sont généralement gérées à partir d’un seul emplacement ou concentrateur.

6.      Transmission de données

Implique l’analyse des données au fur et à mesure qu’elles se déplacent en appliquant une logique aux données : identification des modèles dans les données et filtration pour des utilisations multiples à mesure qu’elles circulent dans l’organisation.

Avantages apportés par le data management

Pour une entreprise, le data management est la première étape dans la gestion d’un volume de données à la fois structurées et non structurées. Mais, ce n’est que grâce aux meilleures pratiques qu’elle peut exploiter la puissance de ces données. C’est également l’unique solution pour obtenir les informations dont elle a besoin pour rendre les données utiles.

En fait, le data management permet aux organisations d’utiliser l’analyse des données à des fins de marketing et de relation client :

  • Personnaliser l’expérience client
  • Ajouter de la valeur aux interactions avec les clients
  • Identifier en temps réel les causes des échecs marketing
  • Récolter les revenus associés au marketing axé sur les données
  • Améliorer l’engagement client
  • Augmenter la fidélité des clients

CRM-Data-Management

Bonnes pratiques dans le data management

Dans toute opération de data management, il faut savoir gérer les données et acquérir les connaissances nécessaires pour prendre de bonnes décisions. Pour ce faire, il faut commencer par se poser une question d’ordre commerciale et acquérir les données nécessaires pour y répondre.

Les entreprises collectent de grandes quantités d’informations à partir de diverses sources. Elles utilisent ensuite les meilleures pratiques tout au long du processus de stockage et de gestion, de nettoyage et d’extraction des données. Enfin, elles procèdent à l’analyse et la visualisation des données pour éclairer leurs décisions commerciales.

Il est important de noter que les meilleures pratiques de gestion des données se traduisent par des améliorations analytiques en même temps. En gérant et en préparant correctement les données pour l’analyse, les entreprises optimisent leur Big Data.

Certaines des meilleures pratiques de data management que les entreprises cherchent désespérément à mettre en œuvre sont :

  • La simplification de l’accès aux données traditionnelles et émergentes.
  • Le nettoyage des données pour insuffler de la qualité dans les processus métier existants
  • Le façonnage des données à l’aide de techniques de manipulation flexibles
Dossier

Power BI : Définition et 6 raisons d’utilisation

Jusqu’à présent, les données sont la meilleure source de connaissances pour les entreprises. En effet, elles en génèrent plus que jamais, d’où l’apparition du terme Big Data. Cependant, accumuler de telles quantités d’informations numériques à très peu d’utilité à moins que ces organisations en comprennent le sens. C’est là qu’interviennent les logiciels de Business Intelligence en self-service tels que Power BI.

Qu’est-ce que Power BI ?

Power BI est le nom commun attribué à une variété d’applications et de services basés sur le Cloud. Ces derniers sont conçus pour aider les entreprises à collecter, gérer et analyser diverses sources de données via une interface facile à utiliser. Il permet de rassembler les données et de les traiter. Mais surtout, il est utile pour transformer les données en informations intelligibles souvent à l’aide de graphiques et de tableaux visuellement précis et faciles à traiter. Cela permet aux utilisateurs de créer des rapports interactifs et de les partager à toutes les parties prenantes d’une entreprise.

Cette application Microsoft se connecte à une variété de sources de données. Il peut s’agir de feuilles de calcul Excel ou de bases de données sur un data warehouse. Il peut également se connecter à des applications à la fois dans le Cloud et sur les serveurs de l’entreprise.

Cette appellation est un terme général et peut faire référence à une application de bureau Windows appelée Power BI Desktop. Il peut s’agir d’un outil ETL (Extract, Transform and Load) dénommé Power Query ou d’un service en ligne SaaS (Software as a Service) appelé Power BI Service. Il peut aussi s’agir d’applications mobiles Power BI pour les Smartphones et tablettes Windows ainsi que pour les appareils iOS et Android.

interface-power-bi

Power BI est basé sur Microsoft Excel. En tant que tel, la courbe d’apprentissage d’Excel vers Power BI n’est pas si raide. Quiconque peut utiliser Excel peut utiliser Power BI. Mais, ce dernier est beaucoup plus puissant que la feuille de calcul.

Que fait cette application d’analyse de données ?

Dans tout environnement d’entreprise, il est essentiel d’unifier toutes les informations disponibles autour d’une même plateforme que ce soit dans le Cloud ou en local. Pour ce faire, Power BI est l’outil idéal. Il permet d’appliquer les connaissances de la Business Intelligence (BI) en exploitant des données en temps réel provenant de différentes sources et en créant des rapports. Sur un simple tableau de bord se trouvent les résultats de tous les éléments à analyser et partager entre plusieurs professionnels d’une même entreprise.

En effet, cette application d’analyse de données est utilisée pour la création de rapports basés sur les données de l’entreprise. En utilisant Power BI, l’utilisateur peut se connecter à un large éventail d’ensembles de données et classer les informations fournies par le biais de la data visualisation afin qu’elles puissent être mieux comprises et assimilées. Le tableau de bord généré à partir de ces données peut être partagé avec d’autres utilisateurs.

Power BI aide les entreprises à voir non seulement ce qui s’est déroulé dans le passé et ce qui se passe dans le présent, mais également ce qui pourrait se produire dans le futur. Cet outil d’analyse de données est doté de fonctionnalités d’apprentissage automatique. Il permet ainsi à son utilisateur de détecter un modèle de données et d’utiliser ce modèle pour effectuer des prédictions éclairées et exécuter des scénarios de simulation. Ces estimations permettent à l’entreprise pour laquelle il travaille de générer des prévisions. Elle aura ainsi la capacité de se préparer à répondre à la demande future et à adopter des mesures clés.

6 raisons d’utiliser Power BI 

Pour les entreprises qui souhaitent plus de puissance de reporting et de force analytique que ce qu’offre Excel, Power BI est à un tout autre niveau du Business Intelligence. Avec cet outil, les entreprises peuvent collecter, analyser et visualiser l’ensemble de leurs données, ce qui leur donne un meilleur aperçu de leur productivité et de leur compétitivité. Ainsi, elles peuvent prendre des décisions plus éclairées basées sur des données réelles.

Pour mieux comprendre la puissance de Power Bi, voici quelques-uns de ses principaux avantages :

  • Les entreprises peuvent gérer de grandes quantités de données via cette application qu’en utilisant d’autres plateformes d’analyse de données.
  • Les informations peuvent être visualisées à l’aide de modèles afin que les entreprises puissent mieux comprendre leurs données.
  • Il est basé sur le service Cloud de sorte que les utilisateurs bénéficient de capacités d’intelligence de pointe et d’algorithmes puissants régulièrement mis à jour.
  • Plusieurs personnalisations permettent aux utilisateurs de créer des tableaux de bord afin d’accéder rapidement aux données dont ils ont besoin.
  • Il propose une interface intuitive qui le rend beaucoup plus facile à utiliser que les feuilles de calcul complexes.
  • Il garantit la sécurité des données en offrant des contrôles d’accessibilité internes et externes.

avantages-power-bi

Pour résumer, Power BI est la solution professionnelle pour visualiser et transformer les données. Mais, il sert surtout à partager des informations avec tous les services de l’entreprise, de manière efficace et rapide. Grâce à ses tableaux de bord intuitifs et à son contrôle d’accessibilité, tout le monde dispose d’informations en temps réel. Toutes les parties prenantes pourront les consulter à tout moment et en tout lieu.

L’analyse des données pour soutenir la prise de décision

Power BI est l’un des plus pratiques et performants outils Microsoft pour l’analyse de données. Il s’est imposé comme le leader du secteur. Il reflète d’ailleurs les connaissances et l’expérience de Microsoft dans ce domaine à travers des solutions telles qu’Excel ou SQL Server et ses compléments (SSAS, SSIS et SSRS).

Power BI facilite la transformation des données en informations grâce à des modèles analytiques. Cela va de l’information à la connaissance en passant par des rapports analytiques avec des graphiques, des tableaux, etc. L’objectif de Microsoft est d’offrir un outil de prise de décisions intelligentes en réduisant les risques. Il apporte une réponse efficace aux besoins d’un des professionnels qui interviennent dans ce domaine : le data analyst.

À part cela, Power Bi est également un outil multiplateforme pour la surveillance de l’entreprise en temps réel par les parties prenantes partout et à tout moment.

L’autre atout de Power BI dans l’analyse des données est son intégration totale avec la suite Office 365. Il donne accès à SharePoint, à un calendrier, à Microsoft Flow pour les flux de travail et à une longue liste de fonctionnalités et de possibilités sans quitter l’environnement Office 365.

Par ailleurs, Microsoft s’est fortement engagé envers les techniques d’apprentissage automatique. Power BI offre de multiples fonctionnalités dans ce domaine :

  • L’analyse automatique des informations
  • Le calcul des corrélations
  • L’identification de valeurs aberrantes
  • Le regroupement
  • L’intégration de Python pour l’importation de données et la création de graphiques
  • Etc.
Conseils

Comment créer des tableaux de bord efficaces ?

Etre data scientist, c’est aussi savoir mettre en valeur la donnée, la faire parler. La mode est aux tableaux de bord, ou aux dashboards, pour être dans l’air du temps !

Mais quels sont les astuces, les bons outils, les erreurs à ne pas commettre ? Je vous livre quelques secrets après être moi-même tombée dans tous les pièges 🙂

 

Continue Reading

Actualités

Je suis Data Scientist !

Tout vient à point à qui sait attendre 🙂

Je viens tout juste de rejoindre les équipes d’Alphalyr, start-up parisienne spécialisée sur Google Analytics qui propose des prestations d’hygiène analytics, de la visualisation de données et du data coaching – j’adore ce concept ! Tout pour optimiser ses datas sur le web !

Et j’ai l’immense honneur d’y devenir Data Scientist – en herbe, d’accord, mais data scientist tout de même 🙂

Continue Reading

Close Bitnami banner
Bitnami